Что называется липидным раствором. Липиды (Жиры). Болезни, связанные с обменом липидов

Главным правилом для поддержания здоровья является равномерное распределение доли жира при подаче блюда на стол. На самом деле человек нуждается в жирах, но он должен контролировать количество потребляемого жира. Человек должен сам определить количество жиров которое будет полезным, а не навредит здоровью. Жир должен попадать в правильное русло, что бы избежать неприятных последствий, связанных с повышением массы тела, что приводит к проблемам с сердцем, гипертонии, инсульту или даже смерть. Поэтому стоит обращать внимание на продукты, которые способствуют сжиганию жира . Сегодня мы рассмотрим 10 неизвестных фактов о жирах.


В среднем обычный человек каждый день приобретает 1 г лишнего жира . В реальности люди набирают больше жировых отложений. Следует уделить больше внимания питанию и физическим нагрузкам. Делайте выводы: чем больше потребление жиров, тем раньше начнутся проблемы со здоровьем.


Жировые клетки живут еще десять лет после смерти человека. Тем не менее, они умирают под воздействием физических нагрузок. Проблема состоит в том, что клетки мозга постоянно умирают и обновляются, но если их место занимают жировые клетки, наступают проблемы с памятью, особенно у людей преклонного возраста.

8. Источник калорий


На самом деле, жир - незаменимый источник калорий, необходимых организму. Он жизненно необходим для поддержания всех процессов жизнедеятельности в организме. Стоит помнить, что избыточный вес ведет к проблемам со здоровьем . Главным правилом является выбор правильных продуктов с количеством калорий, достаточным для работы организма.

7. Жир усиливает аромат


Большинство консервантов и усилителей вкуса сделаны на основе жира . Когда вы смешиваете их с пищей, она приобретает приятный и манящий аромат и вкус. Если любите готовить, попробуйте добавить в блюдо мясо или животный жир, у блюда сразу поменяется запах и вкус.


Жир является своеобразным абсорбентом для витаминов. Люди, которые постоянно принимают витамины, замечают, что после еды действие витаминов ощущается слабее. Особенно, если витамины в растворимой форме.

5. Женщины нуждаются в жирах больше мужчин


В первую очередь большая потребность женщин в жирах связана с природой. Женщина - мать, чтобы зачать ребенка организму требуются силы, чтобы выносить ребенка и вырастить его в утробе, организм сжигает калории и жиры, и, наконец, после рождения ребенка женщина кормит грудью, а основой молока является лактоза и жир. Запасы жира в организме женщины объясняются тем, что организм сохраняет энергию для будущей матери. Поэтому многие женщины теряют вес после кормления грудью.


Существуют два вида жира. Образно их называют хороший и плохой. Хороший жир относят к ненасыщенным жирам, такие жиры необходимы человеческому организму. Они содержатся в нежирном белом мясе, в продуктах, приготовленных на пару, например, рыбе. Плохие жиры - жирное мясо, куриная кожа или молочные продукты. Потребление этих продуктов приводит к повышению холестерина и проблемам с сердцем.


Поскольку жир содержит высокий уровень калорий, они сохраняются в запасе энергии . Потребление 1 грамма жира равно 9 калориям.

2. Хранение жира


Жир, необходимый для здоровья, хранится в мышцах, костном мозге и органах нервной системы. Он просто необходим для производства гормонов и повышения иммунитета. Подкожный жир является показателем того, что пора худеть. Жир содержится в продуктах, которые увеличивают мышечную массу .


Женщины должны поддерживать в организме от 13 до 17% жира , которые обычно хранится в бедрах, груди, бедер и животе. У мужчин жир хранится в животе. Они должны поддерживать в организме долю жира от 3 до 5% , что значительно меньше, чем у женщин.

Жир всегда расценивали как вредный для организма компонент продуктов питания и некоторые диетологи придерживаются мнения, что лучше ограничить прием жиров. Но так ли вредны для нас жиры?

В действительности же жиры выполняют несколько очень важных для нашего организма функций, и в первую очередь жир-важный поставщик энергии для нас. Можно выделить тот факт, что 1г жира поставляет калорий больше, чем белки и углеводы в двойном количестве. Организм не сжигает сразу все жиры, а откладывает часть в депо как резерв, чтобы использовать его в дальнейшем по мере необходимости. Мы приведен Вам информацию о жирах, которая поможет Вам взглянуть на жиры по-новому.

Почему жир необходим нашему организму?

Жиры поставляют важные для жизнедеятельности нашего организма жирные кислоты, которые участвуют в обмене веществ и являются поставщиками энергии. Кроме того, жиры входят в состав клеточных оболочек, например, нервные клетки имеют оболочки, которые на 60% состоят из жиров. Таким образом, можно выделить несколько важных функций жиров:

Жиры-это поставщики энергетического материала-примерно 30% энергии приходится на жиры,

Формируя подкожно-жировую клетчатку, защищают органы и ткани от механического повреждения, а также препятствуют потере тепла,

Являются носителями для витаминов А, D, Е, К, а также для минеральных веществ, поскольку без жиров их всасывание в организме невозможно,

Входят в состав клеточных оболочек (преимущественно холестерин). Без них клетка теряет свою функцию и разрушается,

Жиры вырабатывают женские половые гормоны, что особенно важно в постменопаузе, когда функция яичников практически угасла. Также они играют важную роль и в репродуктивный период, поскольку поддерживают гормональный фон на должном уровне. Если уровень жировой ткани в организме ниже 10-15%, тогда возникает гормональный дисбаланс вплоть до прекращения менструального цикла,

Омега-6 ненасыщенная кислота (она же арахидоновая кислота) участвует в активации свертывающей и противосвертывающей систем крови.

Почти 35% ежедневного рациона должен состоять из жиров. При этом значимую роль играет вид жиров.

Какие жиры полезны, а какие нет?

В зависимости от химического строения жиры разделяют на насыщенные и ненасыщенные жирные кислоты. Насыщенные жирные кислоты содержат большое количество ионов водорода и входят в состав продуктов питания животного происхождения. Это именно те жиры, которые откладываются на животе, бедрах, ягодицах. Это своеобразный энергетический запас организма. Насыщенные жиры препятствуют росту мышечной массы, поскольку снижают действие инсулина. Но в то же время они являются основой для выработки тестостерона. При исключении их из продуктов питания снижается и уровень этого важного для мужчин гормона. То же самое можно получить и при чрезмерном их потреблении. Поэтому они тоже важны для организма, но в меру.

Ненасыщенные жирные кислоты (Омега-3 и Омега-6) содержат мало ионов водорода и содержатся преимущественно в продуктах животного происхождения, например, в оливковом или растительном масле, рыбьем жире. Эти жиры не откладываются в организме, а полностью сжигаются. Они являются полезным для организма компонентом питания, сырьем для выработки гормонов.

Еще существуют так называемые транс-жиры, или искусственные жиры. Они набиты ионами водорода и содержатся в конфетах и печенье, а также в продуктах быстрого питания (фаст-фуде). Их используют преимущественно для хранения продуктов питания и они повышают риск развития онкологических заболеваний и заболеваний со стороны сердечно-сосудистой системы.

Омега-3 и Омега-6 ненасыщенные жирные кислоты.

Из всех видов жиров именно эти жирные кислоты являются наиболее ценными для нашего организма. Они находятся в подсолнечном и кукурузном маслах, а рапсовое масло содержит их в идеальном соотношении.

Полезные для организма Омега-3 жирные кислоты находятся также в льняном, ореховом и соевом масле. Лосось, скумбрия и сельдь также содержат их в достаточном количестве.

Омега-3 и Омега-6 жирные кислоты:

Снижают риск развития атеросклероза, препятствуя таким образом развитию сердечно-сосудистых заболеваний

Снижают уровень холестерина,

Укрепляют стенки сосудов,

Снижают вязкость крови, таким образом предотвращают развитие тромбов,

Улучшают кровоснабжение органов и тканей, восстановлению нервных клеток.

В идеале необходимо смешивать насыщенные и ненасыщенные жиры, например, мясные блюда и салаты заправлять рапсовым маслом.

Что лучше-маргарин или масло?

В противоположность маслу, маргарин содержит больше ненасыщенных жирных кислот. Но согласно новым учениям это не значит, что масло является более вредным. В счете калорий оба продукта практически равны. Но в маргарине содержатся вредные транс-жиры, которые способствуют росту ряда заболеваний.

Если Вы поклонник маргарина, тогда лучше выбирайте высококачественные виды с низким содержанием твердых жиров.

Приводят ли жиры к ожирению?

Несмотря на то, что жиры содержат больше калорий, не доказана связь между потреблением жиров и повышенным весом.

К ожирению приводит избыток калорий: кто употребляет больше калорий, чем их сжигает, прибавляет в весе. Пища, содержащая жиры в достаточном количестве, приводит к насыщению на длительный период и позволяет нам меньше питаться.

Кто напротив, пробует на жирах экономить, ест часто больше углеводов. Зернове продукты, такие, как белый хлеб и макаронные изделия повышают уровень сахара в крови, а вместе с ним и инсулина, что приводит к росту жировой ткани. К тому же насыщение организма происходит быстро, но не длительно, в результате чего приводит к более частому потреблению пищи.

Липиды - весьма разнородные по своему химическому строению вещества, характеризующиеся различной растворимостью в органических растворителях и, как правило, нерастворимые в воде. Они играют важную роль в процессах жизнедеятельности. Будучи одним из основных компонентов биологических мембран, липиды влияют на их проницаемость, участвуют в передаче нервного импульса, создании межклеточных контактов.

Другие функции липидов - образование энергетического резерва, создание защитных водоотталкивающих и термоизоляционных покровов у животных и растений, защита органов и тканей от механических воздействий.

КЛАССИФИКАЦИЯ ЛИПИДОВ

В зависимости от химического состава липиды подразделяют на несколько классов.

  1. Простые липиды включают вещества, молекулы которых состоят только из остатков жирных кислот (или альдегидов) и спиртов. К ним относят
    • жиры (триглицериды и другие нейтральные глицериды)
    • воски
  2. Сложные липиды
    • производные ортофосфорной кислоты (фосфолипиды)
    • липиды, содержащие остатки сахаров (гликолипиды)
    • стерины
    • стериды

В данном разделе химия липидов будет рассмотрена лишь в том объеме, который необходим для понимания обмена липидов.

Если животную или растительную ткань обрабатывать одним или несколькими (чаще последовательно) органическими растворителями, например хлороформом, бензолом или петролейным эфиром, то некоторая часть материала переходит в раствор. Компоненты такой растворимой фракции (вытяжки) называются липидами. Липидная фракция содержит вещества различных типов, большинство из которых представлено на схеме. Заметим, что из-за етерогенности входящих в липидную фракцию компонентов термин "липидная фракция" нельзя рассматривать как структурную характеристику; он является лишь рабочим лабораторным названием фракции, получаемой при экстракции биологического материала малополярными растворителями. Тем не менее большинство липидов имеет некоторые общие структурные особенности, обусловливающие их важные биологические свойства и сходную растворимость.

Жирные кислоты

Жирные кислоты-алифатические карбоновые кислоты - в организме могут находиться в свободном состоянии (следовые количества в клетках и тканях) либо выполнять роль строительных блоков для большинства классов липидов. Из клеток и тканей живых организмов выделено свыше 70 различных жирных кислот.

Жирные кислоты, встречающиеся в природных липидах, содержат четное число углеродных атомов и имеют по преимуществу неразветвленную углеродную цепь. Ниже приводятся формулы наиболее часто встречающихся природных жирных кислот.

Природные жирные кислоты, правда несколько условно, можно разделить на три группы:

  • насыщенные жирные кислоты [показать]
  • мононенасыщенные жирные кислоты [показать]

    Мононенасыщенные (с одной двойной связью) жирные кислоты:

  • полиненасыщенные жирные кислоты [показать]

    Полиненасыщенные (с двумя или более двойными связями) жирные кислоты:

Помимо этих основных трех групп, существует еще группа так называемых необычных природных жирных кислот [показать] .

Жирные кислоты, входящие в состав липидов животных и высших растений, имеют много общих свойств. Как уже отмечалось, почти все природные жирные кислоты содержат четное число углеродных атомов, чаще всего 16 или 18. Ненасыщенные жирные кислоты животных и человека, участвующие в построении липидов, обычно содержат двойную связь между 9-м и 10-м углеродамидополнительные двойные связи, как правило, бывают на участке между 10-м углеродом и метильным концом цепи. Счет идет от карбоксильной группы: ближайший к СООН-группе С-атом обозначают как α, соседний с ним - β и концевой атом углерода в углеводородном радикале - ω.

Своеобразие двойных связей природных ненасышенных жирных кислот заключается в том, что они всегда отделены двумя простыми связями, т. е. между ними всегда имеется хотя бы одна метиленовая группа (-СН=СН-СН 2 -СН=СН-). Подобные двойные связи обозначают как "изолированные". Природные ненасыщенные жирные кислоты имеют цис-конфигурацию и крайне редко встречаются транс-конфигурации. Считают, что в ненасыщенных жирных кислотах с несколькими двойными связями цис-конфигурация придает углеводородной цепи изогнутый и укороченный вид, что имеет биологический смысл (особенно если учесть, что многие липиды входят в состав мембран). В микробных клетках ненасыщенные жирные кислоты обычно содержат одну двойную связь.

Жирные кислоты с длинной углеводородной цепью практически нерастворимы в воде. Их натриевые и калиевые соли (мыла) образуют в воде мицеллы. В последних отрицательно заряженные карбоксильные группы жирных кислот обращены к водной фазе, а неполярные углеводородные цепи спрятаны внутри мицеллярной структуры. Такие мицеллы имеют суммарный отрицательный заряд и в растворе остаются суспендированными благодаря взаимному отталкиванию (рис. 95).

Нейтральные жиры (или глицериды)

Нейтральные жиры - это эфиры глицерина и жирных кислот. Если жирными кислотами эстерифицированы все три гидроксильные группы глицерина, то такое соединение называют триглицеридом (триацилглицерииом), если две - диглицеридом (диацилглицерином) и, наконец, если этерифицирована одна группа - моноглицеридом (моноацилглицерином).

Нейтральные жиры находятся в организме либо в форме протоплазматического жира, являющегося структурным компонентом клеток, либо в форме запасного, резервного жира. Роль этих двух форм жира в организме неодинакова. Протоплазматический жир имеет постоянный химический состав и содержится в тканях в определенном количестве, не изменяющемся даже при патологическом ожирении, в то время как количество резервного жира подвергается большим колебаниям.

Основную массу природных нейтральных жиров составляют триглицериды. Жирные кислоты в триглицеридах могут быть насыщенными и ненасыщенными. Чаще среди жирных кислот встречаются пальмитиновая, стеариновая и олеиновая кислоты. Если все три кислотные радикалы принадлежат одной и той же жирной кислоте, то такие триглицериды называют простыми (например, трипальмитин, тристеарин, триолеин и т. д.), если же разным жирным кислотам, - то смешанными. Названия смешанных триглицеридов образуются от входящих в их состав жирных кислот; при этом цифры 1, 2 и 3 указывают на связь остатка жирной кислоты с соответствующей спиртовой группой в молекуле глицерина (например, 1-олео-2-пальмитостеарин).

Жирные кислоты, входящие в состав триглицеридов, практически определяют их физико-химические свойства. Так, температура плавления триглицеридов повышается с увеличением числа и длины остатков насыщенных жирных кислот. Напротив, чем выше содержание ненасыщенных жирных кислот или кислот с короткой цепью, тем ниже точка плавления. Животные жиры (сало) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему они при комнатной температуре тверды. Жиры, в состав которых входит много моно- и полиненасыщенных кислот, являются при обычной температуре жидкими и называются маслами. Так, в конопляном масле 95% всех жирных кислот приходится на долю олеиновой, линолевой и линоленовой кислот и только 5% - на долю стеариновой и пальмитиновой кислот. Заметим, что в жире человека, плавящемся при 15°С (при температуре тела он жидкий), содержится 70% олеиновой кислоты.

Глицериды способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, в результате которой из триглицеридов образуются глицерин и жирные кислоты. Омыление жира может происходить как при ферментативном гидролизе, так и при действии кислот или щелочей.

Щелочное расщепление жира при действии едкого натра или едкого кали проводится при промышленном получении мыла. Напомним, что мыло представляет собой натриевые или калиевые соли высших жирных кислот.

Для характеристики природных жиров нередко используют следующие показатели:

  1. йодное число - количество граммов йода, которое в определенных условиях связывается 100 г жира; данное число характеризует степень ненасыщенности жирных кислот, присутствующих в жирах, йодное число говяжьего жира 32-47, бараньего 35-46, свиного 46-66;
  2. кислотное число - количество миллиграммов едкого кали, необходимое для нейтрализации 1 г жира. Это число указывает на количество имеющихся в жире свободных жирных кислот;
  3. число омыления - количество миллиграммов едкого кали, израсходованное на нейтрализацию всех жирных кислот (как входящих в состав триглицеридов, так и свободных), содержащихся в 1 г жира. Это число зависит от относительной молекулярной массы жирных кислот, входящих в состав жира. Величина числа омыления у основных животных жиров (говяжий, бараний, свиной) практически одинакова.

Воски - сложные эфиры высших жирных кислот и высших одноатомных или двухатомных спиртов с числом углеродных атомов от 20 до 70. Общие их формулы представлены на схеме, где R, R" и R" - возможные радикалы.

Воски могут входить в состав жира, покрывающего кожу, шерсть, перья. У растений 80% от всех липидов, образующих пленку на поверхности листьев и стволов, составляют воски. Известно также, что воски являются нормальными метаболитами некоторых микроорганизмов.

Природные воски (например, пчелиный воск, спермацет, ланолин) обычно содержат, кроме упомянутых сложных эфиров, некоторое количество свободных высших жирных кислот, спиртов и углеводородов с числом углеродных атомов 21-35.

Фосфолипиды

К этому классу сложных липидов относятся глицерофосфолипиды и сфинголипиды.

Глицерофосфолипиды являются производными фосфатидной кислоты: в их состав входят глицерин, жирные кислоты, фосфорная кислота и обычно азотсодержащие соединения. Общая формула глицерофосфолипидов мпредставлена на схеме, где R 1 и R 2 - радикалы высших жирных кислот, a R 3 - радикал азотистого соединения.

Характерным для всех глицерофосфолипидов является то, что одна часть их молекулы (радикалы R 1 и R 2) обнаруживает резко выраженную гидрофобность, тогда как другая часть гидрофильна благодаря отрицательному заряду остатка фосфорной кислоты и положительному заряду радикала R 3 .

Из всех липидов глицерофосфолипиды обладают наиболее выраженными полярными свойствами. При помещении глицерофосфолипидов в воду в истинный раствор переходит лишь небольшая их часть, основная же масса "растворенного" липида находится в водных системах в форме мицелл. Существует несколько групп (подклассов) глицерофосфолипидов.

    [показать] .

    В отличие от триглицеридов в молекуле фосфатидилхолина одна из трех гидроксильных групп глицерина связана не с жирной, а с фосфорной кислотой. Кроме того, фосфорная кислота в свою очередь соединена эфирной связью с азотистым основанием [НО-СН 2 -СН 2 -N+=(СН 3) 3 ] - холином. Таким образом, в молекуле фосфатидилхолина соединены глицерин, высшие жирные кислоты, фосфорная кислота и холин

    [показать] .

    Основное различие между фосфатидилхолинами и фосфатидилэтаноламинами заключается в том, что в состав последних вместо холина входит азотистое основание этаноламин (НО-СН 2 -СН 2 -NH 3 +).

    Из глицерофосфолипидов в организме животных и высших растений в наибольшем количестве встречаются фосфатидилхолины и фосфатидилэтаноламины. Эти две группы глицерофосфолипидов метаболически связаны друг с другом и являются главными липидными компонентами мембран клеток.

  • Фосфатидилсерины [показать] .

    В молекуле фосфатидилсерина азотистым соединением служит остаток аминокислоты серина.

    Фосфатидилсерины распространены гораздо менее широко, чем фосфатидилхолины и фосфатидилэтаноламины, и их значение определяется в основном тем, что они участвуют в синтезе фосфатидилэтаноламинов.

  • Плазмалогены (ацетальфосфатиды) [показать] .

    Отличаются от рассмотренных выше глицерофосфолипидов тем, что вместо одного остатка высшей жирной кислоты они содержат остаток альдегида жирной кислоты, который связан с гидроксильной группой глицерина ненасыщенной эфирной связью:

    Таким образом, плазмалоген при гидролизе распадается на глицерин, альдегид высшей жирной кислоты, жирную кислоту, фосфорную кислоту, холин или этаноламин.

  • [показать] .

    R 3 -радикалом в этой группе глицерофосфолипидов является шестиуглеродный сахароспирт - инозит:

    Фосфатидилинозиты довольно широко распространены в природе. Они обнаружены у животных, растений и микробов. В животном организме они найдены в мозге, печени и легких.

    [показать] .

    Необходимо отметить, что в природе встречается свободная фосфатидная кислота, хотя по сравнению с другими глицерофосфолипидами в относительно небольших количествах.

К глицерофосфолипидам, точнее к полиглицеринфосфатам, относится кардиолилин. Остов молекулы кардиолйпина включает три остатка глицерина, соединенных друг с другом двумя фосфодиэфирными мостиками через положения 1 и 3; гидроксильные группы двух внешних остатков глицерина этерифицированы жирными кислотами. Кардиолипин входит в состав мембран митохондрий. В табл. 29 суммированы данные о строении основных глицерофосфолипидов.

Среди жирных кислот, входящих в состав глицерофосфолипидов, обнаружены как насыщенные, так и ненасыщенные жирные кислоты (чаще стеариновая, пальмитиновая, олеиновая и линолевая).

Установлено также, что большинство фосфатидилхолинов и фосфатидилэтаноламинов содержит одну насыщенную высшую жирную кислоту, этерифицированную в положении 1 (у 1-го углеродного атома глицерина), и одну ненасыщенную высшую жирную кислоту, этерифицированную в положении 2. Гидролиз фосфатидилхолинов и фосфатидилэтаноламинов при участии особых ферментов содержащихся, например, в яде кобры, которые относятся к фосфолипазам А 2 , приводит к отщеплению ненасыщенной жирной кислоты и образованию лизофосфатидилхолинов или лизофосфатидилэтаноламинов, обладающих сильным гемолитическим действием.

Сфинголипиды

Гликолипиды

Сложные липиды, содержащие в составе молекулы углеводные группы (чаще остаток D-галактозы). Гликолипиды играют существенную роль в функционировании биологических мембран. Они содержатся преимущественно в ткани мозга, но имеются также и в кровяных клетках и других тканях. Известны три основные группы гликолипидов:

  • цереброзиды
  • сульфатиды
  • ганглиозиды

Цереброзиды не содержат ни фосфорной кислоты, ни холина. В их состав входит гексоза (обычно это D-галактоза), которая связана эфирной связью с гидроксильной группой аминоспирта сфингозина. Кроме того, в состав цереброзида входит жирная кислота. Среди этих жирных кислот чаще всего встречается лигноцериновая, нервоновая и цереброновая кислоты, т. е. жирные кислоты, имеющие 24 углеродных атома. Структура цереброзидов может быть представлена схемой. Цереброзиды можно относить также к сфинголипидам, поскольку они содержат спирт сфингозин.

Наиболее изученными представителями цереброзидов являются нервон, содержащий нервоновую кислоту, цереброн, в состав которого входит цереброновая кислота, и керазин, содержащий лигноцириновую кислоту. Особенно велико содержание цереброзидов в мембранах нервных клеток (в миелиновой оболочке).

Сульфатиды отличаются от цереброзидов тем, что содержат в молекуле остаток серной кислоты. Иными словами, сульфатид представляет собой цереброзидсульфат, в котором сульфат этерифицирован по третьему углеродному атому гексозы. В мозге млекопитающих сульфатиды, как н цереброзиды, находятся в белом веществе. Однако содержание их в мозге намного ниже, чем цереброзидов.

При гидролизе ганглиозидов можно обнаружить высшую жирную кислоту, спирт сфингозин, D-глюкозу и D-галактозу, а также производные аминосахаров: N-ацетилглюкозамин и N-ацетилнейраминовую кислоту. Последняя синтезируется в организме из глюкозамина.

В структурном отношении ганглиозиды в значительной мере сходны с цереброзидами, с той только разницей, что вместо одного остатка галактозы они содержат сложный олигосахарид. Одним из простейших ганглиозидов является гематозид, выделенный из стромы эритроцитов (схема)

В отличие от цереброзидов и сульфатидов ганглиозиды находятся преимущественно в сером веществе мозга и сосредоточены в плазматических мембранах нервных и глиальных клеток.

Все рассмотренные выше липиды принято называть омыляемыми, поскольку при их гидролизе образуются мыла. Однако имеются липиды, которые не гидролизуются с освобождением жирных кислот. К таким липидам относятся стероиды.

Стероиды - широко распространенные в природе соединения. Они являются производными циклопентанпергидрофенантренового ядра, содержащего три конденсированных циклогексановых и одно циклопентановое кольцо. К стероидам относятся многочисленные вещества гормональной природы, а также холестерин, желчные кислоты и другие соединения.

В организме человека первое место среди стероидов занимают стерины. Наиболее важным представителем стеринов является холестерин:

Он содержит спиртовую гидроксильную группу при С 3 и разветвленную алифатическую цепь из восьми атомов углерода при С 17 . Гидроксильная группа при С 3 может быть этерифицирована высшей жирной кислотой; при этом образуются эфиры холестерина (холестериды):

Холестерин играет роль ключевого промежуточного продукта в синтезе многих других соединений. Холестерином богаты плазматические мембраны многих животных клеток; в значительно меныцем количестве он содержится в мембранах митохондрий и в эндоплазматической сети. Заметим, что в растениях холестерин отсутствует. У растений имеются другие стерины, известные под общим названием фитостеринов.

Спасибо

Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна!

Что за вещества липиды?

Липиды представляют собой одну из групп органических соединений, имеющую огромное значение для живых организмов. По химической структуре все липиды делятся на простые и сложные. Молекула простых липидов состоит из спирта и желчных кислот, в то время как в состав сложных липидов входят и другие атомы или соединения.

В целом, липиды имеют огромное значение для человека. Эти вещества входят в значительную часть продуктов питания , используются в медицине и фармации, играют важную роль во многих отраслях промышленности. В живом организме липиды в том или ином виде входят в состав всех клеток. С точки зрения питания – это очень важный источник энергии.

Какая разница между липидами и жирами?

В принципе, термин «липиды» происходит от греческого корня, означающего «жир», однако эти определения все же имеют некоторые отличия. Липиды являются более обширной группой веществ, в то время как под жирами понимают лишь некоторые виды липидов. Синонимом «жиров» являются «триглицериды », которые получаются из соединения спирта глицерина и карбоновых кислот. Как липиды в целом, так и триглицериды в частности играют значительную роль в биологических процессах.

Липиды в организме человека

Липиды входят в состав практически всех тканей организма. Их молекулы есть в любой живой клетке, и без этих веществ попросту невозможна жизнь. В организме человека встречается очень много различных липидов. Каждый вид или класс этих соединений имеет свои функции. От нормального поступления и образования липидов зависит множество биологических процессов.

С точки зрения биохимии, липиды принимают участие в следующих важнейших процессах:

  • выработка организмом энергии;
  • деление клеток;
  • передача нервных импульсов;
  • образование компонентов крови, гормонов и других важных веществ;
  • защита и фиксация некоторых внутренних органов;
  • клеточное деление, дыхание и др.
Таким образом, липиды являются жизненно важными химическими соединениями. Значительная часть этих веществ поступает в организм с пищей. После этого структурные компоненты липидов усваиваются организмом, и клетки вырабатывают новые молекулы липидов.

Биологическая роль липидов в живой клетке

Молекулы липидов выполняют огромное количество функций не только в масштабах всего организма, но и в каждой живой клетке в отдельности. По сути, клетка представляет собой структурную единицу живого организма. В ней происходит усвоение и синтез (образование ) определенных веществ. Часть из этих веществ идет на поддержание жизнедеятельности самой клетки, часть – на деление клетки, часть – на потребности других клеток и тканей.

В живом организме липиды выполняют следующие функции:

  • энергетическая;
  • резервная;
  • структурная;
  • транспортная;
  • ферментативная;
  • запасающая;
  • сигнальная;
  • регуляторная.

Энергетическая функция

Энергетическая функция липидов сводится к их распаду в организме, в процессе которого выделяется большое количество энергии. Живым клеткам эта энергия необходима для поддержания различных процессов (дыхание, рост, деление, синтез новых веществ ). Липиды поступают в клетку с притоком крови и откладываются внутри (в цитоплазме ) в виде небольших капель жира. При необходимости эти молекулы расщепляются, и клетка получает энергию.

Резервная (запасающая ) функция

Резервная функция тесно связана с энергетической. В форме жиров внутри клеток энергия может откладываться «про запас» и выделяться по мере необходимости. За накопление жиров ответственны особые клетки – адипоциты. Большая часть их объема занята крупной каплей жира. Именно из адипоцитов состоит жировая ткань в организме. Наибольшие запасы жировой ткани находятся в подкожно-жировой клетчатке, большом и малом сальнике (в брюшной полости ). При длительном голодании жировая ткань постепенно распадается, так как для получения энергии используются резервы липидов.

Также жировая ткань, отложенная в подкожно-жировой клетчатке, осуществляет теплоизоляцию. Ткани, богатые липидами, в целом хуже проводят тепло. Это позволяет организму поддерживать постоянную температуру тела и не так быстро охлаждаться или перегреваться в различных условиях внешней среды.

Структурная и барьерная функции (мембранные липиды )

Огромную роль играют липиды в строении живых клеток. В человеческом организме эти вещества образуют особый двойной слой, который формирует клеточную стенку. Благодаря этому живая клетка может выполнять свои функции и регулировать обмен веществ с внешней средой. Липиды, образующие клеточную мембрану, также позволяют сохранять форму клетки.

Почему липиды-мономеры образуют двойной слой (бислой )?

Мономерами называются химические вещества (в данном случае – молекулы ), которые способны, соединяясь, формировать более сложные соединения. Клеточная стенка состоит из двойного слоя (бислоя ) липидов. Каждая молекула, образующая эту стенку, имеет две части – гидрофобную (не контактирующую с водой ) и гидрофильную (контактирующую с водой ). Двойной слой получается из-за того, что молекулы липидов развернуты гидрофильными частями внутрь клетки и кнаружи. Гидрофобные же части практически соприкасаются, так как находятся между двумя слоями. В толще липидного бислоя могут располагаться и другие молекулы (белки, углеводы, сложные молекулярные структуры ), которые регулируют прохождение веществ через клеточную стенку.

Транспортная функция

Транспортная функция липидов имеет второстепенное значение в организме. Ее выполняют лишь некоторые соединения. Например, липопротеины, состоящие из липидов и белков, переносят в крови некоторые вещества от одного органа к другому. Однако эту функцию редко выделяют, не считая ее основной для данных веществ.

Ферментативная функция

В принципе, липиды не входят в состав ферментов, участвующих в расщеплении других веществ. Однако без липидов клетки органов не смогут синтезировать ферменты , конечный продукт жизнедеятельности. Кроме того, некоторые липиды играют значительную роль в усвоении поступающих с пищей жиров. В желчи содержится значительное количество фосфолипидов и холестерина . Они нейтрализуют избыток ферментов поджелудочной железы и не дают им повредить клетки кишечника . Также в желчи происходит растворение (эмульгирование ) экзогенных липидов, поступающих с пищей. Таким образом, липиды играют огромную роль в пищеварении и помогают в работе других ферментов, хотя сами по себе ферментами не являются.

Сигнальная функция

Часть сложных липидов выполняет в организме сигнальную функцию. Она заключается в поддержании различных процессов. Например, гликолипиды в нервных клетках принимают участие в передаче нервного импульса от одной нервной клетки к другой. Кроме того, большое значение имеют сигналы внутри самой клетки. Ей необходимо «распознавать» поступающие с кровью вещества, чтобы транспортировать их внутрь.

Регуляторная функция

Регуляторная функция липидов в организме является второстепенной. Сами липиды в крови мало влияют на течение различных процессов. Однако они входят в состав других веществ, имеющих огромное значение в регуляции этих процессов. Прежде всего, это стероидные гормоны (гормоны надпочечников и половые гормоны ). Они играют важную роль в обмене веществ, росте и развитии организма, репродуктивной функции, влияют на работу иммунной системы. Также липиды входят в состав простагландинов . Эти вещества вырабатываются при воспалительных процессах и влияют на некоторые процессы в нервной системе (например, восприятие боли ).

Таким образом, сами липиды не выполняют регуляторной функции, но их недостаток может отразиться на многих процессах в организме.

Биохимия липидов и их связь с другими веществами (белки, углеводы, АТФ, нуклеиновые кислоты, аминокислоты, стероиды )

Обмен липидов тесно связан с обменом других веществ в организме. В первую очередь, эта связь прослеживается в питании человека. Любая пища состоит из белков, углеводов и липидов, которые должны попадать в организм в определенных пропорциях. В этом случае человек будет получать и достаточно энергии, и достаточно структурных элементов. В противном случае (например, при недостатке липидов ) для выработки энергии будут расщепляться белки и углеводы.

Также липиды в той или иной степени связаны с обменом следующих веществ:

  • Аденозинтрифосфорная кислота (АТФ ). АТФ является своеобразной единицей энергии внутри клетки. При расщеплении липидов часть энергии идет на производство молекул АТФ, а эти молекулы принимают участие во всех внутриклеточных процессах (транспорт веществ, деление клетки, нейтрализация токсинов и др. ).
  • Нуклеиновые кислоты. Нуклеиновые кислоты являются структурными элементами ДНК и находятся в ядрах живых клеток. Энергия, вырабатываемая при расщеплении жиров, идет отчасти и на деление клеток. Во время деления происходит образование новых цепочек ДНК из нуклеиновых кислот.
  • Аминокислоты. Аминокислоты – это структурные компоненты белков. В соединении с липидами они образуют сложные комплексы, липопротеины, отвечающие за транспорт веществ в организме.
  • Стероиды. Стероиды – это вид гормонов, содержащих значительное количество липидов. При плохом усвоении липидов из пищи у пациента могут начаться проблемы с эндокринной системой.
Таким образом, обмен липидов в организме в любом случае нужно рассматривать в комплексе, с точки зрения взаимосвязи с другими веществами.

Переваривание и всасывание липидов (обмен веществ, метаболизм )

Переваривание и всасывание липидов является первым этапом обмена этих веществ. Основная часть липидов попадает в организм с пищей. В ротовой полости происходит измельчение пищи и ее смешивание со слюной. Далее комок попадает желудок , где химические связи частично разрушаются под действием соляной кислоты. Также некоторые химические связи в липидах разрушаются под действием фермента липазы , содержащейся в слюне.

Липиды нерастворимы в воде, поэтому в двенадцатиперстной кишке они не сразу подвергаются расщеплению ферментами. Сначала происходит так называемое эмульгирование жиров. После этого химические связи расщепляются под действием липазы, поступающей из поджелудочной железы. В принципе, для каждого вида липидов сейчас определен свой фермент, отвечающий за расщепление и усвоение данного вещества. Например, фосфолипаза расщепляет фосфолипиды, холестеролэстераза – соединения холестерола и т. д. Все эти ферменты в том или ином количестве содержатся в соке поджелудочной железы.

Расщепленные фрагменты липидов всасываются по отдельности клетками тонкого кишечника. В целом переваривание жиров представляет собой весьма сложный процесс, который регулируется множеством гормонов и гормоноподобных веществ.

Что такое эмульгирование липидов?

Эмульгирование представляет собой неполное растворение жировых веществ в воде. В пищевом комке, попадающем в двенадцатиперстную кишку, жиры содержатся в виде крупных капель. Это препятствует их взаимодействию с ферментами. В процессе эмульгирования крупные жировые капли «дробятся» на капельки поменьше. В результате площадь соприкосновения жировых капель и окружающих водорастворимых веществ увеличивается, и становится возможным расщепление липидов.

Процесс эмульгирования липидов в пищеварительной системе проходит в несколько этапов:

  • На первом этапе печень вырабатывает желчь, которая и будет осуществлять эмульгирование жиров. Она содержит соли холестерина и фосфолипидов, которые взаимодействуют с липидами и способствуют их «дроблению» на мелкие капли.
  • Желчь, выделяемая из печени , скапливается в желчном пузыре. Здесь она концентрируется и выделяется по мере необходимости.
  • При потреблении жирной пищи, к гладким мышцам желчного пузыря поступает сигнал для сокращения. В результате порция желчи по желчевыводящим протокам выделяется в двенадцатиперстную кишку.
  • В двенадцатиперстной кишке происходит собственно эмульгирование жиров и их взаимодействие с ферментами поджелудочной железы. Сокращения стенок тонкого кишечника способствуют этому процессу, «перемешивая» содержимое.
У некоторых людей после удаления желчного пузыря могут возникнуть проблемы с усвоением жиров. Желчь поступает в двенадцатиперстную кишку непрерывно, непосредственно из печени, и ее не хватает для эмульгирования всего объема липидов, если их съедено слишком много.

Ферменты для расщепления липидов

Для переваривания каждого вещества в организме присутствуют свои ферменты. Их задача состоит в разрушении химических связей между молекулами (или между атомами в молекулах ), чтобы полезные вещества могли нормально усваиваться организмом. За расщепления различных липидов отвечают разные ферменты. Большинство из них содержится в соке, выделяемом поджелудочной железой.

За расщепление липидов отвечают следующие группы ферментов:

  • липазы;
  • фосфолипазы;
  • холестеролэстераза и др.

Какие витамины и гормоны участвуют в регуляции уровня липидов?

Уровень большинства липидов в крови человека относительно постоянен. Он может колебаться в определенных пределах. Зависит это от биологических процессов, протекающих в самом организме, и от ряда внешних факторов. Регуляция уровня липидов в крови является сложным биологическим процессом, в котором принимает участие множество различных органов и веществ.

Наибольшую роль в усвоении и поддержании постоянного уровня липидов играют следующие вещества:

  • Ферменты. Ряд ферментов поджелудочной железы принимает участие в расщеплении липидов, поступающих в организм с пищей. При недостатке этих ферментов уровень липидов в крови может понизиться, так как эти вещества просто не будут усваиваться в кишечнике.
  • Желчные кислоты и их соли. В желчи содержатся желчные кислоты и ряд их соединений, которые способствуют эмульгированию липидов. Без этих веществ также невозможно нормальное усвоение липидов.
  • Витамины. Витамины оказывают комплексное укрепляющее действие на организм и прямо или косвенно влияют также на обмен липидов. Например, при недостатке витамина А ухудшается регенерация клеток в слизистых оболочках, и переваривание веществ в кишечнике тоже замедляется.
  • Внутриклеточные ферменты. В клетках эпителия кишечника содержатся ферменты, которые после всасывания жирных кислот преобразуют их в транспортные формы и направляют в кровоток.
  • Гормоны. Ряд гормонов влияет на обмен веществ в целом. Например, высокий уровень инсулина может сильно влиять на уровень липидов в крови. Именно поэтому для пациентов с сахарным диабетом некоторые нормы пересмотрены. Гормоны щитовидной железы , глюкокортикоидные гормоны или норадреналин могут стимулировать распад жировой ткани с выделением энергии.
Таким образом, поддержание нормального уровня липидов в крови – весьма сложный процесс, на который прямо или косвенно влияют разные гормоны, витамины и другие вещества. В процессе диагностики врачу необходимо определить, на каком именно этапе этот процесс был нарушен.

Биосинтез (образование ) и гидролиз (распад ) липидов в организме (анаболизм и катаболизм )

Метаболизмом называется совокупность обменных процессов в организме. Все метаболические процессы можно разделить на катаболические и анаболические. К катаболическим процессам относится расщепление и распад веществ. В отношении липидов это характеризуется их гидролизом (распадом на более простые вещества ) в желудочно-кишечном тракте. Анаболизм объединяет биохимические реакции, направленные на образование новых, более сложных веществ.

Биосинтез липидов происходит в следующих тканях и клетках:

  • Клетки эпителия кишечника. В стенке кишечника происходит всасывание жирных кислот, холестерина и других липидов. Сразу после этого в этих же клетках образуются новые, транспортные формы липидов, которые попадают в венозную кровь и направляются в печень.
  • Клетки печени. В клетках печени часть транспортных форм липидов распадется, и из них синтезируются новые вещества. Например, здесь происходит образование соединений холестерина и фосфолипидов, которые затем выделяются с желчью и способствуют нормальному пищеварению.
  • Клетки других органов. Часть липидов попадает с кровью в другие органы и ткани. В зависимости от типа клеток, липиды преобразуются в определенный вид соединений. Все клетки, так или иначе, синтезируют липиды для образования клеточной стенки (липидного бислоя ). В надпочечниках и половых железах из части липидов синтезируются стероидные гормоны.
Совокупность вышеописанных процессов и составляет метаболизм липидов в человеческом организме.

Ресинтез липидов в печени и других органах

Ресинтезом называется процесс образования определенных веществ из более простых, которые были усвоены раньше. В организме этот процесс протекает во внутренней среде некоторых клеток. Ресинтез необходим, для того чтобы ткани и органы получали все необходимые виды липидов, а не только те, которые были употреблены с пищей. Ресинтезированные липиды называются эндогенными. На их образование организм затрачивает энергию.

На первом этапе ресинтез липидов происходит в стенках кишечника. Здесь поступающие с пищей жирные кислоты преобразуются в транспортные формы, которые отправятся с кровью в печень и другие органы. Часть ресинтезированных липидов будет доставлено в ткани, из другой части образуются необходимые для жизнедеятельности вещества (липопротеины, желчь, гормоны и др. ), избыток преобразуется в жировую ткань и откладывается «про запас».

Входят ли липиды в состав мозга?

Липиды являются очень важной составляющей частью нервных клеток не только в головном мозге , но и во всей нервной системе. Как известно, нервные клетки контролируют различные процессы в организме путем передачи нервных импульсов. При этом все нервные пути «изолированы» друг от друга, чтобы импульс приходил к определенным клеткам и не затрагивал другие нервные пути. Такая «изоляция» возможна благодаря миелиновой оболочке нервных клеток. Миелин, препятствующий хаотичному распространению импульсов, примерно на 75% состоит из липидов. Как и в клеточных мембранах, здесь они образуют двойной слой (бислой ), который несколько раз завернут вокруг нервной клетки.

В состав миелиновой оболочки в нервной системе входят следующие липиды:

  • фосфолипиды;
  • холестерин;
  • галактолипиды;
  • гликолипиды.
При некоторых врожденных нарушениях образования липидов возможны неврологические проблемы. Это объясняется именно истончением или прерыванием миелиновой оболочки.

Липидные гормоны

Липиды играют важную структурную роль, в том числе, присутствуя в структуре многих гормонов. Гормоны, в состав которых входят жирные кислоты, называют стероидными. В организме они вырабатываются половыми железами и надпочечниками. Некоторые из них присутствуют и в клетках жировой ткани. Стероидные гормоны принимают участие в регуляции множества жизненно важных процессов. Их дисбаланс может повлиять на массу тела, способность к зачатию ребенка , развитие любых воспалительных процессов, работу иммунной системы. Залогом нормальной выработки стероидных гормонов является сбалансированное потребление липидов.

Липиды входят в состав следующих жизненно важных гормонов:

  • кортикостероиды (кортизол , альдостерон , гидрокортизон и др. );
  • мужские половые гормоны - андрогены (андростендион, дигидротестостерон и др. );
  • женские половые гормоны - эстрогены (эстриол, эстрадиол и др. ).
Таким образом, недостаток некоторых жирных кислот в пище может серьезно отразиться на работе эндокринной системы.

Роль липидов для кожи и волос

Большое значение имеют липиды для здоровья кожи и ее придатков (волосы и ногти ). В коже содержатся так называемые сальные железы, которые выделяют на поверхность некоторое количество секрета, богатого жирами. Это вещество выполняет множество полезных функций.

Для волос и кожи липиды важны по следующим причинам:

  • значительная часть вещества волоса состоит из сложных липидов;
  • клетки кожи быстро меняются, и липиды важны как энергетический ресурс;
  • секрет (выделяемое вещество ) сальных желез увлажняет кожу;
  • благодаря жирам поддерживается упругость, эластичность и гладкость кожи;
  • небольшое количество липидов на поверхности волос придают им здоровый блеск;
  • липидный слой на поверхности кожи защищает ее от агрессивного воздействия внешних факторов (холод, солнечные лучи, микробы на поверхности кожи и др. ).
В клетки кожи, как и в волосяные луковицы, липиды поступают с кровью. Таким образом, нормальное питание обеспечивает здоровье кожи и волос. Использование шампуней и кремов, содержащих липиды (особенно незаменимые жирные кислоты ) также важно, потому что часть этих веществ будет впитываться с поверхности клеток.

Классификация липидов

В биологии и химии существует довольно много различных классификаций липидов. Основной является химическая классификация, согласно которой липиды делятся в зависимости от своей структуры. С этой точки зрения все липиды можно разделить на простые (состоящие только из атомов кислорода, водорода и углерода ) и сложные (включающие хотя бы один атом других элементов ). Каждая из этих групп имеет соответствующие подгруппы. Эта классификация наиболее удобна, так как отражает не только химическое строение веществ, но и частично определяет химические свойства.

В биологии и медицине имеются свои дополнительные классификации, использующие другие критерии.

Экзогенные и эндогенные липиды

Все липиды в организме человека можно разделить на две большие группы - экзогенные и эндогенные. В первую группу входят все вещества, попадающие в организм из внешней среды. Наибольшее количество экзогенных липидов попадает в организм с пищей, однако существуют и другие пути. Например, при применении различных косметических средств или лекарственных препаратов организм также может получать некоторое количество липидов. Их действие будет преимущественно локальным.

После попадания в организм все экзогенные липиды расщепляются и усваиваются живыми клетками. Здесь из их структурных компонентов будут сформированы другие липидные соединения, в которых нуждается организм. Эти липиды, синтезированные собственными клетками, называются эндогенными. Они могут иметь совершенно другую структуру и функции, но состоят из тех же «структурных компонентов», которые попали в организм с экзогенными липидами. Именно поэтому при недостатке в пище тех или иных видов жиров могут развиваться различные заболевания. Часть компонентов сложных липидов не может быть синтезирована организмом самостоятельно, что отражается на течении определенных биологических процессов.

Жирные кислоты

Жирными кислотами называется класс органических соединений, которые являются структурной часть липидов. В зависимости от того, какие именно жирные кислоты входят в состав липида, могут меняться свойства этого вещества. Например, триглицериды, важнейший источник энергии для человеческого организма, являются производными спирта глицерина и нескольких жирных кислот.

В природе жирные кислоты содержатся в самых разных веществах - от нефти до растительных масел. В организм человека они попадают в основном с пищей. Каждая кислота является структурным компонентом для определенных клеток, ферментов или соединений. После всасывания организм преобразует ее и использует в различных биологических процессах.

Наиболее важными источниками жирных кислот для человека являются:

  • животные жиры;
  • растительные жиры;
  • тропические масла (цитрусовое, пальмовое и др. );
  • жиры для пищевой промышленности (маргарин и др. ).
В организме человека жирные кислоты могут откладываться в жировой ткани в составе триглицеридов либо циркулировать в крови. В крови они содержатся как в свободном виде, так и в виде соединений (различные фракции липопротеинов ).

Насыщенные и ненасыщенные жирные кислоты

Все жирные кислоты по своей химической структуре делятся на насыщенные и ненасыщенные. Насыщенные кислоты менее полезны для организма, а некоторые из них даже вредны. Это объясняется тем, что в молекуле этих веществ нет двойных связей. Это химически стабильные соединения, и они хуже усваиваются организмом. В настоящее время доказана связь некоторых насыщенных жирных кислот с развитием атеросклероза .

Ненасыщенные жирные кислоты делятся на две большие группы:

  • Мононенасыщенные. Данные кислоты имеют в своей структуре одну двойную связь и являются, таким образом, более активными. Считается, что их употребление в пищу может понижать уровень холестерина и препятствовать развитию атеросклероза. Наибольшее количество мононенасыщенных жирных кислот содержится в ряде растений (авокадо , оливки, фисташки, лесные орехи ) и, соответственно, в маслах, получаемых из этих растений.
  • Полиненасыщенные. Полиненасыщенные жирные кислоты имеют в своей структуре несколько двойных связей. Отличительной особенностью этих веществ является то, что человеческий организм не способен их синтезировать. Другими словами, если в организм не будут поступать с пищей полиненасыщенные жирные кислоты, со временем это неизбежно приведет к определенным нарушениям. Лучшими источниками этих кислот являются морепродукты, соевое и льняное масло, семена кунжута , мака , пророщенная пшеница и др.

Фосфолипиды

Фосфолипиды являются сложными липидами, содержащими в своем составе остаток фосфорной кислоты. Эти вещества наряду с холестерином являются основным компонентом клеточных мембран. Также эти вещества принимают участие в транспорте других липидов в организме. С медицинской точки зрения фосфолипиды могут выполнять и сигнальную роль. Например, они входят в состав желчи, так как способствуют эмульгированию (растворению ) других жиров. В зависимости от того, какого вещества в желчи больше, холестерина или фосфолипидов, можно определить риск развития желчекаменной болезни .

Глицерин и триглицериды

По химической структуре глицерин не является липидом, однако он является важным структурным компонентом триглицеридов. Это группа липидов, играющих огромную роль в организме человека. Наиболее важной функцией этих веществ является поставка энергии. Триглицериды, попадающие в организм с пищей, расщепляются на глицерин и жирные кислоты. В результате выделяется очень большое количество энергии, которая идет на работу мышц (скелетных мышц, мышцы сердца и др. ).

Жировая ткань в организме человека представлена в основном триглицеридами. Большая часть этих веществ, перед тем как отложиться в жировой ткани, претерпевает некоторые химические трансформации в печени.

Бета-липиды

Бета-липидами иногда называют бета-липопротеиды. Двойственность названия объясняется различиями в классификациях. Это одна из фракций липопротеинов в организме, которая играет важную роль в развитии некоторых патологий. Прежде всего, речь идет об атеросклерозе. Бета-липопротеиды транспортируют холестерол от одних клеток к другим, но в силу особенностей строения молекул, этот холестерол часто «застревает» в стенках сосудов, образуя атеросклеротические бляшки и препятствуя нормальному току крови. Перед применением необходимо проконсультироваться со специалистом.

Что такое липиды, какова классификация липидов, в чем состоит их строение и функции? Ответ на этот и многие другие вопросы дает биохимия, занимающаяся изучением этих и других веществ, имеющих большое значение для метаболизма.

Что это такое

Липиды представляют собой органические вещества, нерастворяемые в воде. Функции липидов в теле человека многообразны.

Липиды — это слово означает «мелкие частички жира»

Это прежде всего:

  • Энергетическая. Липиды служат субстратом для запасания и использования энергии. При расщеплении 1 грамма жиров выделяется примерно в 2 раза больше энергии, чем при расщеплении белка или углеводов такого же веса.
  • Структурная функция. Структура липидов определяет строение мембран клеток нашего тела. Они располагаются таким образом, что гидрофильная часть молекулы находится внутри клетки, а гидрофобная ─ на ее поверхности. Благодаря этим свойствам липидов каждая клетка, с одной стороны, представляет собой автономную систему, отгороженную от внешнего мира, а с другой ─ каждая клетка может обмениваться молекулами с другими и с окружающей средой с помощью специальных транспортных систем.
  • Защитная. Поверхностный слой, что имеется у нас на коже и служит своеобразным барьером между нами и окружающим миром также составлен из липидов. Кроме того, они в составе жировой ткани обеспечивают функцию теплоизоляции и защиту от пагубных внешних воздействий.
  • Регуляторная. Они входят в состав витаминов, гормонов и других веществ, регулирующих многие процессы в организме.

Общая характеристика липидов исходит из особенностей строения. Они обладают двоякими свойствами, так как имеют в составе молекулы растворимую и нерастворимую части.

Поступление в организм

Липиды частично поступают в организм человека с пищей, частично способны синтезироваться эндогенно. Расщепление основной части пищевых липидов происходит в 12-перстной кишке под воздействием панкреатического сока, выделяемого поджелудочной железой и желчных кислот в составе желчи. Расщепившись, они ресинтезируются вновь в кишечной стенке и, уже в составе специальных транспортных частиц ─ липопротеинов, ─ готовы поступить в лимфатическую систему и общий кровоток.

С пищей ежедневно человеку необходимо получать около 50-100 граммов жиров, что зависит от состояния организма и уровня физической активности.

Классификация

Классификация липидов в зависимости от их способности образовывать мыла в определенных условиях разделяет их на следующие классы липидов:

  • Омыляемые. Так называются вещества, которые в среде с щелочной реакцией образуют соли карбокислот (мыла). В эту группу относятся простые липиды, сложные липиды. Как простые липиды, так и сложные важны организму, они имеют разное строение и, соответственно ему, липиды выполняют разные функции.
  • Неомыляемые. В щелочной среде не образуют солей карбоновых кислот. Сюда биологическая химия относит жирные кислоты, производные полиненасыщенных жирных кислот ─ эйкозаноиды, холестерин, как наиболее яркий представитель основного класса стеринов-липидов, а также производные его ─ стероиды и некоторые другие вещества, например, витамины А, Е и др.

Общая классификация липидов

Жирные кислоты

Веществами, которые относятся к группе так называемых простых липидов и имеют большое значение для организма являются жирные кислоты. В зависимости от наличия двойных связей в неполярном (нерастворимом в воде) углеродном «хвосте», жирные кислоты делят на насыщенные (двойных связей не имеют) и ненасыщенные (имеют одну или даже больше двойных углерод-углеродных связей). Примеры первых: стеариновая, пальмитиновая. Примеры ненасыщенных и полиненасыщенных жирных кислот: олеиновая, линолевая и др.

Именно ненасыщенные жирные кислоты особенно важны для нас и должны обязательно поступать с пищей.

Почему? Потому что они:

  • Служат компонентом для синтеза клеточных мембран, участвуют в образовании многих биологически активных молекул.
  • Помогают поддерживать работу эндокринной и половой систем в норме.
  • Помогают предупредить или замедлить развитие атеросклероза и многих его последствий.

Жирные кислоты делятся на две большие группы: ненасыщенные и насыщенные

Медиаторы воспаления и не только

Еще одним видом простых липидов являются такие важные медиаторы внутренней регуляции, как эйкозаноиды. Они имеют уникальное (как практически все в биологии) химическое строение и, соответственно этому, уникальные химические свойства. Главной основой для синтеза эйкозаноидов выступает арахидоновая кислота, которая является одной из важнейших ненасыщенных жирных кислот. Именно эйкозаноиды отвечают в организме за течение воспалительных процессов.

Кратко описать их роль в воспалении можно следующим образом:

  • Они изменяют проницаемость сосудистой стенки (а именно ─ повышают ее проницаемость).
  • Стимулируют выход лейкоцитов и других клеток иммунной системы в ткани.
  • С помощью химических веществ опосредуют перемещения клеток иммунитета, выброс ферментов и поглощение чужеродных для организма частиц.

Но на этом роль эйкозаноидов в теле человека не заканчивается, они также ответственны за систему свертывания крови. В зависимости от складывающейся ситуации эйкозаноиды могут расширить сосуды, расслабить гладкую мускулатуру, уменьшить агрегацию или, если потребуется, вызвать обратные эффекты: сужение сосудов, сокращение гладких мышечных клеток и тромбообразование.

Эйкозаноиды – обширная группа физиологически и фармакологически активных соединений

Проводились исследования, согласно которым, люди, в достаточном количестве получавшие главный субстрат синтеза эйкозаноидов ─ арахидоновую кислоту ─ с пищей (находится в рыбьем жире, рыбе, растительных маслах) меньше страдали от заболеваний сердечно-сосудистой системы. Вероятнее всего, это связано с тем, что такие люди имеют более совершенный обмен эйкозаноидов.

Вещества сложного строения

Сложные липиды ─ группа веществ, не менее важная для организма, чем простые липиды. Основные свойства этой группы жиров:

  • Участвуют в образовании клеточных мембран, наряду с простыми липидами, а также обеспечивают межклеточные взаимодействия.
  • Входят в состав миелиновой оболочки нервных волокон, необходимой для нормальной передачи нервного импульса.
  • Они являются одним из важных компонентов сурфактанта ─ вещества, обеспечивающего процессы дыхания, а именно предотвращающего спадание альвеол во время выдоха.
  • Многие из них играют роль рецепторов на поверхности клеток.
  • Значение некоторых сложных жиров, выделяемых из спинномозговой жидкости, нервной ткани, сердечной мышцы до конца не выяснена.

К простейшим представителям липидов этой группы относятся фосфолипиды, глико- и сфинголипиды.

Холестерин

Холестерин является веществом липидной природы с наиболее важным значением в медицине, так как нарушение именно его обмена негативно сказывается на состоянии всего организма.

Часть холестерина поступает внутрь с пищей, а часть ─ синтезируется в печени, надпочечниках, половых железах и коже.

Он также участвует в образовании клеточных мембран, синтезе гормонов и других химически активных веществ, а также участвует в метаболизме липидов в теле человека. Показатели именно холестерина в крови часто исследуются врачами, так как они показывают состояние обмена липидов в организме человека в целом.

Липиды имеют свои особые транспортные формы ─ липопротеины. С их помощью они могут переноситься с током крови, не вызывая эмболии.

Нарушения жирового обмена быстрее и ярче всего проявляются нарушениями обмена холестерина, преобладанием атерогенных его переносчиков (так называются липопротеины низкой и очень низкой плотности) над антиатерогенными (липопротеины с высокой плотностью).

Основным проявлением патологии липидного обмена является развитие атеросклероза.

Проявляет он себя сужением просвета артериальных сосудов по всему организму. В зависимости от преобладания в сосудах различных локализаций развивается сужение просвета коронарных сосудов (сопровождающееся стенокардией), сосудов головного мозга (с нарушениями запоминания, слуха, возможными головными болями, шумом в голове), сосудов почек, сосудов нижних конечностей, сосудов органов пищеварения с соответствующей симптоматикой.

Таким образом, липиды одновременно являются незаменимым субстратом для многих процессов в организме и, в то же время, при нарушении жирового обмена, могут стать причиной многих заболеваний и патологических состояний. Поэтому, жировой обмен требует за собой контроля и коррекции при возникновении такой необходимости.

Loading...Loading...